Использование мер семантической близости для распознавания кореференции в русском языке
https://doi.org/10.25205/1818-7935-2019-17-1-65-77
Аннотация
Об авторе
И. Л. АзерковичРоссия
Список литературы
1. Крюков К. В., Панкова Л. А., Пронина В. А., Суховеров В. С., Шипилина Л. Б. Меры семантической близости в онтологии // Проблемы управления. 2010. Вып. 5. С. 2-14
2. Лукашевич Н. В. Тезаурусы в задачах информационного поиска. М.: Изд-во Моск. ун-та, 2011
3. Толпегин П. В. Автоматическое разрешение кореференции местоимений третьего лица русскоязычных текстов: Дис. ... канд. техн. наук. М., 2008
4. Azerkovich, I. Employing Wikipedia data for coreference resolution in Russian. Artificial Intelligence and Natural Language. AINL 2017. Series: Communications in Computer and Information Science, 2018, vol. 789, p. 107-112.
5. Bagga, A., Baldwin, B. Algorithms for scoring coreference chains. In: The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference, 1998, vol. 1, p. 563-566.
6. Banerjee, S., Pedersen, T. Extended gloss overlaps as a measure of semantic relatedness. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers Inc., 2003, p. 805-810.
7. Bogdanov, A. V., Dzhumaev, S. S., Skorinkin, D. A., Starostin, A. S. Anaphora analysis based on ABBYY Compreno linguistic technologies. In: Computational linguistics and intellectual technologies: Proceedings of the international conference “Dialogue 2014”. Moscow, 2014, vol. 13 (20), p. 89-102.
8. Budanitsky, A., Hirst, G. Evaluating wordnet-based measures of lexical semantic relatedness. Computational Linguistics, 2006, vol. 32 (1), p. 13-47.
9. Haghighi, A., Klein, D. Simple coreference resolution with rich syntactic and semantic features. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2009, vol. 3, p. 1152-1161.
10. Harabagiu, S. M., Bunescu, R. C., Maiorano, S. J. Text and knowledge mining for coreference resolution. In: Proceedings of the second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies. Association for Computational Linguistics, 2001, p. 1-8.
11. Kamenskaya, M. A., Khramoin, I. V., Smirnov, I. V. Data driven methods for anaphora resolution of Russian texts. Computational linguistics and intellectual technologies: Proceedings of the international conference “Dialogue 2014”. Moscow, 2014, vol. 13 (20), p. 241-250.
12. Kameyama, M. Recognizing referential links: an information extraction perspective. In: Proceedings of the ACL'97/EACL'97 workshop on Operational factors in practical, robust anaphora resolution. Madrid, Spain, 1997, p. 46-53.
13. Kutuzov, A. B., Ionov M. The impact of morphology processing quality on automated anaphora resolution for Russian. In: Computational linguistics and intellectual technologies: Proceedings of the international conference “Dialogue 2014”. Moscow, 2014, vol. 13 (20), p. 232-240.
14. Leacock, C., Chodorow, M. Combining local context and WordNet similarity for word sense identification. In: WordNet. An Electronic Lexical Database. MIT Press, 1998, p. 265-283.
15. Lesk, M. Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone. In: Proceedings of the 5th Annual Conference on Systems Documentation. ACM, 1986, p. 24-26.
16. Ng, V., Cardie, C. Improving machine learning approaches to coreference resolution. In: Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, 2002, p. 104-111.
17. Ponzetto, S. P., Strube, M. Exploiting semantic role labeling, WordNet and Wikipedia for coreference resolution. In: Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics. Association for Computational Linguistics, 2006, p. 192-199.
18. Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., Zhang, Y. CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for Computational Linguistics, 2012, p. 1-40.
19. Rada, R., Mili, H., Bicknell, E., Blettner, M. Development and application of a metric to semantic nets. In: IEEE Transactions on Systems, Man and Cybernetics, 1989, iss. 19 (1), p. 17-30.
20. Rahman, A., Ng, V. Coreference resolution with world knowledge. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2011, vol. 1, p. 814-824.
21. Resnik, P. Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the Fourteenth International. Joint Conference on Artificial Intelligence. IJCAII, 1995, vol. 1, p. 448-453.
22. Seco, N., Veale, T., Hayes, J. An intrinsic information content metric for semantic similarity in WordNet. In: Proceedings of the 16th European Conference on Artificial Intelligence. IOS Press, 2004, p. 1089-1090.
23. Sharoff, S., Nivre, J. The proper place of men and machines in language technology: Processing Russian without any linguistic knowledge. In: Computational linguistics and intellectual technologies: Proceedings of the international conference “Dialogue 2014”. Moscow, 2011, vol. 10 (17), p. 591-605.
24. Soon, W. M., Ng, H. T., Lim, D. C. Y. A machine learning approach to coreference resolution of noun phrases. Computational Linguistics, 2001, vol. 27, no. 4, p. 521-544.
25. Toldova, S. Ju. Roytberg, A., Ladygina, A. A., Vasilyeva, M. D., Azerkovich, I. L., Kurzukov, M., Sim, G., Gorshkov, D. V., Ivanova, A., Nedoluzhko, A., Grishina, Y. Ru-Eval-2014: Evaluating anaphora and coreference resolution for Russian. In: Computational linguistics and intellectual technologies: Proceedings of the international conference “Dialogue 2014”. Moscow, 2014, vol. 13 (20), p. 681-694.
26. Toldova, S., Grishina, Yu., Ladygina, A., Vasilyeva, M., Sim, G., Azerkovich, I. Russian coreference corpus. In: Almeida F. A., Barrera I.O., Toledo E. Q. (eds.). Input a Word, Analyze the World: Selected Approaches to Corpus Linguistics. Cambridge Scholars Publishing, 2016, p. 107-124.
27. Toldova, S., Ionov, M. Coreference Resolution for Russian: The Impact of Semantic Features. In: Computational linguistics and intellectual technologies: Proceedings of the international conference “Dialogue 2014”. Moscow, 2017, vol. 16 (23), p. 339-348.
28. Vilain, M., Burger, J., Aberdeen, J., Connolly, D., Hirschman, L. A model-theoretic coreference scoring scheme. In: Proceedings of the 6th Conference on Message Understanding, ser. MUC6 ’95. Stroudsburg, PA, USA: Association for Computational Linguistics, 1995, p. 45-52.
29. Wu, Z., Palmer, M. Verb semantics and lexical selection. In: Proceedings of ACL-94, 1994, p. 133-138.
30. Yeh, E., Ramage, D., Manning, C. D., Agirre, E., Soroa, A. WikiWalk: random walks on Wikipedia for semantic relatedness. In: Proceedings of the 2009 workshop on graph-based methods for natural language processing. Association for Computational Linguistics, 2009, p. 41-49.
Рецензия
Для цитирования:
Азеркович И.Л. Использование мер семантической близости для распознавания кореференции в русском языке. Вестник НГУ. Серия: Лингвистика и межкультурная коммуникация. 2019;17(1):65-77. https://doi.org/10.25205/1818-7935-2019-17-1-65-77
For citation:
Azerkovich I.L. Using Semantic Relatedness Measures in Coreference Resolution for Russian. NSU Vestnik. Series: Linguistics and Intercultural Communication. 2019;17(1):65-77. (In Russ.) https://doi.org/10.25205/1818-7935-2019-17-1-65-77