Preview

NSU Vestnik. Series: Linguistics and Intercultural Communication

Advanced search

A NEW ALGORITHM AND OTHER SOFTWARE FOR DISAMBIGUATION OF POLYSEMY AND HOMONYMY FOR COMPUTER TRANSLATION INTO RUSSIAN SIGN LANGUAGE BASED ON A SEMANTIC PRINCIPLE

https://doi.org/10.25205/1818-7935-2018-16-3-32-44

Abstract

The paper analyses current computer Sign Language translation systems. Their advantages and disadvantages are detected. The main drawback is the lack of original text semantic analysis module capable of solving the task of disambiguation. A general scheme of translation system from phonic Russian to Russian Sign language including a module for semantic analysis is presented. It includes a block of source code analysis, developed by the authors, responsible for handling the semantic component of the Russian language. The semantic module relies on Tuzov’s dictionary. The semantic analysis algorithm is also described. The text analysis is completed when each word gets only one semantic description thus solving the problem of ambiguity. The most important developments of the semantic analysis module include the following: expanded collection of gestures, parsing of complex sentences, account in the algorithm analyses predicates classifier of Russian Sign Language. Testing of algorithm is made. The article compares the existing systems of computer translation from phonic to the sign language. The advantages and disadvantages of the considered systems are revealed and a conclusion is made about the need to take into account the semantic aspect of the translation process. A technology of semantic analysis is suggested. The model to choose an adequate meaning of a polysemic word or homonym on the basis of the automatic text processing system «Dialing» is described. Examples of the use of the software are given. The questions of testing the working capacity of the semantic analysis module are given due attention too. To enhance its efficiency, the system of semantic analysis was added to the translation system «Surdophone». To verify the efficiency of the semantic module’s operation, a comparison is made with the definition of some words’ semantic meanings by the systems «Yandex Translator» and «Google Translator». The present system showed its advantage in more complex cases. Also, the base of gestures of the RSL whose names are homonyms and polysemic words of the Russian language, were added and the features of their performance were revealed.

About the Authors

M. G. Grif
Novosibirsk State Technical University
Russian Federation


O. O. Korolkova
Novosibirsk State Pedagogical University
Russian Federation


Y. S. Manueva
Novosibirsk State Technical University
Russian Federation


References

1. Воскресенский А. Л. Сопоставительное лексикографическое описание слов русского языка и жестов языка глухих России в словаре RuSLED // Компьютерная лингвистика и интеллектуальные технологии: Материалы ежегодной Международной конференции «Диалог». М.: Изд-во РГГУ, 2008. № 7 (14). С. 91-96.

2. Гейльман И. Ф. Специфические средства общения глухих. Дактилология и мимика: Словарь. Л., 1975-1979. Ч. 1-4.

3. Гриф М. Г., Мануева Ю. С., Козлов А. Н. Построение системы компьютерного сурдоперевода русского языка // Тр. СПИИРАН. 2014. № 6 (37). С. 170-183.

4. Гриф М. Г., Тимофеева М. К. Проблема автоматизации сурдоперевода с позиции прикладной лингвистики // Сибирский филологический журнал. 2012. № 1. С. 211-219.

5. Гриф М. Г. Методы и технологии компьютерного сурдоперевода: Учеб. пособие. Новосибирск: Изд-во НГТУ, 2012. 71 с.

6. Королькова О. О. Особенности омонимии и полисемии в русском жестовом языке (на материале видеословаря русского жестового языка) // В мире научных открытий. 2013. № 5.1. С. 169-184.

7. Королькова О. О. Определение объема «Полного словаря русского жестового языка» // Современные исследования социальных проблем. 2014. № 3 (19). C. 69-74.

8. Королькова О. О. Особенности жестов русского жестового языка, названиями которых являются омонимы русского языка // В мире научных открытий. 2015. № 7.8 (67). С. 2931-2942.

9. Словарь русского жестового языка / Рук. авт. колл. В. З. Базоев. М.: Флинта, 2009. 528 с.

10. Сокирко А. Семантические словари в автоматической обработке текста (по материалам системы Диалинг). М., 2000. 108 c.

11. Тузов В. А. Компьютерная семантика русского языка: Учеб. пособие. СПб.: Изд-во СПбГУ, 2003. 391c.

12. Фрадкина Р. Н. Говорящие руки. Тематический словарь жестового языка глухих России. М.: Московская городская организация ВОГ, 2001. 598 с.

13. Veale T., Conway A. Cross modal comprehension in ZARDOZ an English to sign-language translation system. Trinity College, 1994. 326 p.

14. Wakefield M. VisiCAST. Milestone: Final Report, 2002. 97 p.

15. Zhao L., Kipper K., Schuler W. A Machine Translation System from English to American Sign Language // Lecture Notes in Computer Science. 2000. Vol. 1934. P. 54-67.


Review

For citations:


Grif M.G., Korolkova O.O., Manueva Y.S. A NEW ALGORITHM AND OTHER SOFTWARE FOR DISAMBIGUATION OF POLYSEMY AND HOMONYMY FOR COMPUTER TRANSLATION INTO RUSSIAN SIGN LANGUAGE BASED ON A SEMANTIC PRINCIPLE. NSU Vestnik. Series: Linguistics and Intercultural Communication. 2018;16(3):32-44. (In Russ.) https://doi.org/10.25205/1818-7935-2018-16-3-32-44

Views: 201


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-7935 (Print)